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Abstract

An investigation into the computational aspects of a multi-well mixture approach to shape memory modeling is
undertaken with the goals of determining its qualitative behavior as well as its e�ciency in a numerical setting. A
basic rate dependent model for the transformation is ®rst introduced, followed by a discussion of the steps taken to

implement the constitution in discrete form. Numerical simulations demonstrate the quantitative and qualitative
response of shape memory alloy structural systems to various thermal and mechanical cycles. # 1999 Elsevier
Science Ltd. All rights reserved.
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1. Introduction

Although there is a signi®cant body of literature treating various aspects of transformations in shape

memory alloys, the phenomena is su�ciently complex such that any computational treatment attempting

to capture the macroscopic response of a structural system composed of these materials necessarily

requires signi®cant simpli®cations to result in a tractable problem. Thus, the majority of previous
attempts within the computational arena have followed a phase space approach which, with the advent

of robust integration schemes, has proven to be an e�cient technique for modeling one-dimensional

constitutive response (for examples, see Brinson and Lammering, 1993; Brinson and Bekker, 1997;

Govindjee and Kasper, 1997, 1999). However, the primary disadvantage of such an approach is that it is

not readily apparent how one should extend the model to capture multidimensional material response;

see Lubliner and Auricchio (1996) for one possible method. To overcome this di�culty, in this paper we

investigate the computational aspects of a model derived primarily from the work of Achenbach (1989),

Achenbach and MuÈ ller (1985), MuÈ ller and Xu (1991), Abeyaratne et al. (1994), and Abeyaratne and
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Kim (1997). This constitutive model, which is generically referred to in the literature as a multi-well
approach, uses the principles of statistical physics to estimate the transformation rates between variants
in a shape memory alloy. As such, the evolution of the system depends upon energetic considerations
which are valid independent of dimension, although in the present paper we limit our investigation to a
one-dimensional application. Rather than attempting to improve upon the models suggested in the
literature, the primary goal of this work is to investigate the feasibility of implementing multi-well
models in conjunction with mixture theory within a computational setting such that complex structural
systems can be analyzed with reasonable e�ciency.

An outline of the presented work is as follows. In Section 2, the kinematic and essential constitutive
assumptions are presented in a general setting. A concrete example is then given in Section 3, where
constitutive equations for a three variant (one dimensional) shape memory alloy are speci®ed. This leads
into a discussion of the computational aspects of implementing the given model within a ®nite element
setting, followed by Section 4 in which several simulations are presented which demonstrate the
behavior of the model. Appendix A details some considerations on matrix exponentiation; Appendix B
gives details of the model's algorithmic tangent; and Appendix C gives an extension of the model to
plasticity.

2. Constitutive framework

2.1. Preliminaries

Let O0 and O be the reference and spatial con®gurations of a bounded deformable continuum
comprised of a $ {1,2,3, . . . ,v } continua moving in R3 space. Such a system may be idealized as a
mixture in the classical sense (Atkin and Craine, 1976), where each constituent enjoys its own path in
space, time, temperature, etc., whereas the history of the body is taken to be a functional of the
constituent paths. Typically, each of the constituents is allowed a motion such that a spatial point is
simultaneously occupied in the manner

x � jjja�Xa, t� �1�

which leads naturally to the existence of constituent velocities va and the concept of di�usion. However,
for the purpose of simulating the macroscopic e�ects of changes in lattice structure under the
assumption of ®rst-order di�usionless displacive transformations, it is reasonable to consider a pointwise
homogeneous mixture. Speci®cally, it is assumed there exists for each point X $ O0 a spatial position
x $ O, an absolute temperature y, and a set of volume fractions x a, the histories of which may be
described by the su�ciently smooth functions

x � jjj�X,t� y � ŷ�X,t� xa � x̂a�X,t�: �2�

In order to correctly simulate motions with large rotational components, the Green±Lagrange tensor (E)
is taken as the strain measure for all subsequent calculations. It is de®ned from the deformation
gradient (F) in the usual manner:

F � @jjj
@X

E � 1

2
�FTFÿ I�: �3�
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2.2. Conservation of mass

At every point in the spatial continuum the volume fractions are de®ned by x a=limV40(V
a/V ), from

which is it apparent that the local volume fractions are subject to the restrictionsX
a

xa � 1; 0RxaR1: �4�

Then, assigning to each member of the mixture a reference density r a
0 which maps to a unique density

r a in the spatial con®guration, one may compute the mass of the body, m, in the following manner:

m �
�
O

X
a

raxa dv: �5�

If the mass ¯ux across the bounding surface of the body @O is zero, then conservation of mass dictates

_m � d

dt

�
O

X
a

raxa dv � 0: �6�

Neglecting the possibility of di�usion in accordance with the previous kinematic assumptions, a single
velocity vector v describes the motion at each point v=vÃ (x, t ). Using this fact, the transport theorem as
applied to the mixture is expressed as

_m �
�
O

X
a

� _raxa � raxa div�v�� dv � 0: �7�

Letting J = det(F) represent the Jacobian of the deformation gradient, we have the following basic
relations

ra0 � raJ
d

dt
J � div�v�J: �8�

This allows Eq. (7) to be rewritten as

_m �
�
O

X
a

ra _x
a

dv � 0 �9�

from which it is concluded that at every point in the body Sara _x
a � 0. Of primary interest are materials

in which r a=r b for all a, b, in which case conservation of mass reduces toX
a

_x
a � 0: �10�

In what follows, Eqs. (4) and (10) serve as fundamental restrictions on the values x a and transformation
rates _x

a
which the volume fractions may assume. Furthermore, the superscripts on the densities will be

dropped, as we will assume equal densities.

2.3. Potential functions

In constructing a free energy function for the mixture described thus far, it is assumed that the
individual behavior of each constituent is su�ciently captured by a thermoelastic material model. The
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individual functions are denoted by

ca � ĉa�E, y� �11�

where r0c
a is the Helmholtz free energy per unit volume. In considering the free energy of the mixture,

it is apparent that there are at least two sources which contribute to the total. The ®rst is the
contribution stored in the individual constituents, and the second is due to distortional energy
accumulated at the interfacial boundaries. Denoting the second contribution by E � Ê(E, y, x a), the total
free energy may be approximated by the function

C �
X
a

xaca � E �12�

where it is clear that C � Ĉ(E, y, x a). Previous authors on the subject of constitutive modeling for
shape memory alloys have taken di�erent approaches in considering an interfacial energy function. For
example, Achenbach (1989) derived a form based on the probabilistic argument that the surface energy
is maximal half way through a transformation between two variants, and hence the energy was
approximated as a constant times the product of the relative fractions involved. On the other hand,
Boyd and Lagoudas (1996a, b) chose to neglect the energy stored at the interface in their model. In
order to simplify the computational aspects of simulating shape memory alloy behavior, we have
initially chosen the latter approach, namely, to consider E 1 0 for the present investigation. This leaves

r0C �
X
a

xar0c
a �13�

as the chosen Helmholtz free energy function for the mixture. One may then construct a Gibbs function
by the following transformation

G � ÿsup
E

fS:Eÿ r0Cg �14�

so that G=GÃ(S, y ) and S is the e�ective second Piola±Kirchho� stress measure for the mixture. This
may also be rewritten as

G � ÿsup
E

(X
a

xa�S:Eÿ r0c
a�
)
: �15�

A framework for modeling the transformation between constituents is considered next.

2.4. Transformation kinetics

While several methods have been suggested in the literature for modeling the transformation
phenomena in shape memory alloys, we have chosen to follow the approach taken by Achenbach (1989)
and later adopted by Abeyaratne et al. (1994). The approach is based on statistical physics, wherein it is
postulated that the rate of transformation between constituents is proportional to the net probability
that one phase will overcome the energetic barrier required to transform to a second phase. Thus, the
thermally activated process will occur at a rate
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_x
a �

Xb 6�a
b

o �Pbax
b ÿ Pabx

a� �16�

where Pab estimates the transition probability of constituent a transforming to constituent b, with an
attempt frequency of o. Since Eq. (16) is inhomogeneous in time it will lead to a model that displays
dependencies on the loading rate. At this point we do not propose a speci®c form for Pab; this is
addressed in the following section. Of current interest is the resulting structure, which by summation of
rates is expressible in matrix notation as

_xxx � Qxxx: �17�
From an implementation viewpoint, it is noteworthy that properties of systems of di�erential equations
which have this speci®c form have been treated extensively in the literature of probability and statistics,
wherein Q is referred to as the in®nitesimal generator of a Markov process (Stewart, 1994). It is also
worth noting that Eq. (17) exactly satis®es the balance of mass constraint given in Eq. (10).

In the following section, speci®c functions are chosen for the constituent free energy functions ca,
and the transformation probabilities Pab, thereby closing the set of constitutive equations.

3. Example: A three variant shape memory alloy

With the underlying assumptions described in Section 2, we now consider applying the theory to
problems which can reasonably be characterized as one-dimensional with regard to constitutive
response. Furthermore, we consider an idealized polycrystalline material which is composed of three
structures: an austenitic parent phase, and two variants of a martensitic phase. The austenite phase will
be denoted by `a', and the martensite twins will be denoted by + or ÿ in accordance with the sign of
their associated Bain strain. The stresses and strains which appear in the following equations will be
understood to be the one dimensional (scalar) counterparts to the second Piola±Kirchho� stress tensor
and the Green±Lagrange strain tensor.

3.1. Helmholtz, Gibbs, and potential energy functions

In one dimension, the three constituent materials may be described by free energy functions (per unit
volume) of the form (Abeyaratne et al., 1994)

r0c
a � 1

2C
aE2 ÿ zCaE�yÿ y0� � r0cy�1ÿ log�y=y0�� �18�

r0c
ÿ � 1

2C
ÿ�Eÿ EÿT �2 ÿ zCÿ�Eÿ EÿT ��yÿ y0� � r0cy�1ÿ log�y=y0�� ÿ r0lT�1ÿ y=y0� �19�

r0c
� � 1

2C
��Eÿ E�T �2 ÿ zC��Eÿ E�T ��yÿ y0� � r0cy�1ÿ log�y=y0�� ÿ r0lT�1ÿ y=y0� �20�

where it is envisaged that c a corresponds with the parent phase while cÿ and c+ correspond to the
two twin variants of the martensitic phase. It is implied that the heat capacities, c, and the thermal
expansion coe�cients, z, of the three constituents are constant and equal; the latent heat, lT, of the
twins match; Ca are the sti�nesses; Ea

T are the martensitic variant Bain strains; and y0 is the reference
temperature. A free energy function for the mixture is formulated in accordance with Eq. (13), resulting
in
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C � Ĉ�E,y,xa� �
X
a

xaca � xaca � xÿcÿ � x�c�: �21�

Consequently, in accordance with mixture theory (Atkin and Craine, 1976), the e�ective second Piola±
Kirchho� stress S is computed directly from the Helmholtz Potential and may be expressed as a sum of
contributions from each phase.

S � xar0
@ca

@E
� xÿr0

@cÿ

@E
� x�r0

@c�

@E
�22�

S � xÿCÿ�Eÿ EÿT ÿ z�yÿ y0�� � xaCa�Eÿ z�yÿ y0�� � x�C��Eÿ E�T ÿ z�yÿ y0��: �23�
Likewise, the e�ective modulus may be computed from the free energy as

r0
@2C
@E2
�
X
a

r0
@2ca

@E2
� xÿCÿ � xaCa � x�C� � C �24�

thereby allowing the stress relation to be restated in the following compact manner.

S � C�Eÿ z�yÿ y0�� ÿ xÿCÿEÿT ÿ x�C�E�T : �25�
Next, a three variant Gibbs function for the mixture is de®ned as described in Eq. (15), resulting in

G � ÿsup
E

(X
a

xa�S:Eÿ r0c
a�
)
� ÿsup

E

(X
a

xaga
)

�26�

where ĝa(S, E, y )=S:Eÿr0ca(E, y ) de®nes a potential energy function for constituent a. In particular,
the relation

G � Ĝ�S, y� � ÿsup
E

fĝa�S, y, E�g �27�

is valid when x a=1 and the mixture at the associated point is comprised of only a single variant. Under
an applied stress ®eld these potential functions are considered indicators of the driving potential for
phase transformation. As such, they play an important role in the evolution of the mixture as
investigated next.

3.2. Transition probability

An explicit statement of Eqs. (16) and (17) for the three variant problem is given by2664
_x

a

_x
ÿ

_x
�

3775 � o

24ÿ�Paÿ � Pa�� Pÿa P�a

Paÿ ÿ�Pÿa � Pÿ�� P�ÿ
Pa� Pÿ� ÿ�P�a � P�ÿ�

3524 xa

xÿ

x�

35 �28�

where explicit vector±matrix notation has been employed. The speci®cation of estimates of the
transformation probabilities Pab essentially follows from the work of Abeyaratne et al. (1994) as well as
Achenbach and MuÈ ller (1985). Given a representative volume possibly comprised of any two
constituents a and b, the rate at which phase a transforms to phase b is given by a classical ®rst order
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or Eyring model as

Pab � exp

�ÿDvbab
ky

�
, �29�

where k is Boltzmann's constant, Dv is the volume occupied by the transforming region, y is the
absolute temperature, and bab is the energetic barrier for the transition from a to b. The value of this
barrier is estimated simply as

bab � b̂ab�S,y� � Gab ÿ G�S,y,xa � 1�r0 �30�

where Gab is de®ned as the energy at which the potential functions g a and g b are equal in value for a
®xed value of stress. The graphical interpretation which is typically portrayed in the referenced works is
a plot of the potential functions g a such as that shown in Fig. 1. In this ®gure, the circled intersection
locates Gab. For the present case of a three variant system, the above method can be used to compute
the six required probability terms which make up Q.

Eqs. (28)±(30), when combined with the framework presented in Section 2, are su�cient to de®ne the
phase transformation rates. The thermodynamic consistency of the model is governed by the Clausius±
Planck inequality which reduces in the present case to the requirement that

ÿ
�t2
t1

1

y
@G

@xxx
_xxxr0, �31�

where t1, t2 are equilibrium states. We next turn our attention to computational aspects of the model.

3.3. Time integration

In what follows, it is assumed that the model is to be implemented within a traditional strain driven
®nite element code. This allows one to consider the constitutive model at a Gauss point as an
independent entity within an unspeci®ed array of integration points. At time tn + 1 the constitution will

Fig. 1. Graphical interpretation of barrier energy for a ®xed stress value.
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have available to it the current strain and temperature values (En + 1, yn + 1) as well as the history
variables x a

n. In return, the constitution must provide a stress value Sn + 1, updated volume fractions
x a
n + 1, and the algorithmic tangent1 Calg

n + 1=(@Sn + 1/@En + 1). The subscripts n and n + 1 denote
quantities evaluated at times tn and tn + 1=tn+Dt, Dt> 0, respectively. Note for simplicity we will
consider the temperature as an assigned ®eld. In moving the (one dimensional) discrete form of the
constitution from time tn to time tn + 1, we begin by writing the e�ective modulus, stress and rate matrix
at time tn + 1:

Cn�1 � xÿn�1C
ÿ � xa

n�1C
a � x�n�1C

� �32�

Sn�1 � Cn�1�En�1 ÿ z�yn�1 ÿ y0�� ÿ xÿn�1C
ÿEÿT ÿ x�n�1C

�E�T �33�

Qn�1 � ÃQ �Sn�1, yn�1�: �34�

Turning to the transformation equations, we ®rst express the solution as the exact form (for constant Q)

xxx�Dt� � exp�QDt�xxxn: �35�

Then, by applying `backward Euler', it is required that the discrete form of Eq. (35) be satis®ed at the
end of each timestep. This requirement is stated as

xxxn�1 � exp� ÄQ n�1�xxxn, �36�

where QÄ n + 1=(Dt )Qn + 1 is a nonlinear function of the fractions x a. The motivation for integrating this
set in the speci®ed manner is threefold. The ®rst lies in the highly nonlinear relationship between Q and
the volume fractions, hence the need for an accurate integration scheme. The second is the small size of
the system (dim(Q)=v where v is the number of variants) and the need to compute the transient
solution, thereby making the computation of the exponential a reasonable approach. The third reason is
based on the properties of Q and a comparison of several methods for solving problems with this
speci®c form. However, as is discussed further in Appendix A, a more e�cient technique will prove
bene®cial in multidimensions where the number of variants is increased.

In order to solve for the unknowns in the implicit integration, it is convenient to formulate a residual
function f de®ned as

f�xxx� � xxxÿ exp� ÄQ � ÃS �xxx���xxxn, �37�

where the nonlinearity of the equation set is apparent from the noted function dependencies. The
determination of a self-consistent solution of Eqs. (32)±(36) is accomplished when

f�xxxn�1� � 0 �38�
is satis®ed to some acceptable tolerance. An outline of the approach taken to solve for xxxn�1 is given by
Algorithm 1, where it is seen that the technique is of the Newton±Raphson type.

1 See Simo and Taylor (1986) for a discussion of consistent tangent operators; see also Appendix B.
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Algorithm 1 (Constitutive iteration).

1. Input at time t n + 1:

fEn�1, yn�1, xxxng �39�
2. Initialize values:

S � ÃS �En�1, yn�1, xxxn� �40�

xxxk � xxxn �41�

Fig. 2. Plot of the norm of the residual function over the phase space domain. The upper ®gure provides a contour plot of the sur-

face shown below.
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3. Compute the residual function:

Q � ÃQ �S, yn�1� �42�

fk � xxxk ÿ exp�DtQ�xxxn �43�
4. IF kfk1< TOL THEN

xxxn�1 � xxxk �44�

Sn�1 � S �45�

C
alg
n�1 �

@Sn�1
@En�1

�46�

RETURN�)END �47�
5. ELSE

xxxk�1 � xxxk ÿ k�rxfk�ÿ1fk �48�

S � ÃS �En�1, yn�1, xxxk�1� �49�

k � k� 1 �50�
6. GOTO STEP 3.

In practice, the steplength/linesearch parameter k is typically set to equal one. However, if (kfk + 1k1/
kfkk1)rE, where E is typically set between 1

2 and 4
5, then an attempt is made to improve the update by

adjusting k. Although various techniques for performing the linesearch were attempted, the simple
techniques of divide and conquer and sampling proved most e�cient due to the fact that x a $ [0, 1]. It is
noted that each step of the constitutive iteration requires computation of the term M=exp[DtQ]. Since
this operation has the potential to dominate the cost of the constitutive iteration, particularly upon
extension to higher dimensions, means by which this process can be improved and/or minimized are
worth investigating. Appendix A discusses steps which can be taken to reduce the cost of the
computation of M, while on the constitutive side heuristics can be developed to improve the starting
iterate and hence also reduce the number of operations.

As an illustration of the di�culty in solving the constitutive equations, Fig. 2 shows the one norm of
the residual function plotted over the domain {(xÿ, x+) $ [0, 1] � [0, 1] v xÿ+x+ R 1} for a particularly
di�cult set of initial conditions. As is apparent, modi®cation of the standard Newton±Raphson scheme
is necessary to provide an e�cient solution routine. Numerical tests of the proposed integration scheme
are provided in Section 4.

4. Numerical simulations

In this section we provide examples which demonstrate the qualitative and quantitative behavior of
the numerical implementation. As a baseline, simulations of simple thermal and mechanical cycles are
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presented ®rst. Then, as a test of the constitutive algorithm under spatially inhomogeneous loading
patterns, a truss system similar to that suggested by Govindjee and Kasper (1999) is run. The ®nal
examples are of a shape memory beam undergoing large rotations, a simulation of an SMA mechanism,
and a plastically deformed shape memory beam.

Table 1

Approximate material properties for TiNi

Reference density r=6448.0 kg/m3

Young's moduli, Austenite Ca=67.0 � 109 Pa

Young's moduli, Martensite Cÿ, C+=26.3 � 109 Pa

Latent heat lT=14.5 � 103 J/kg

Heat capacity c = 4.00 � 102 J/(kg K)

Transformation rate o=16 � 103 1/s

Transformation volume Dv= 2.71 � 10ÿ27 m3

Bain strain Ea
T=20.07

Fig. 3. Mechanical load cycle of TiNi bar under isothermal conditions. The solid, dashed, and dash±dot lines indicate runs at 263,

293, 323 K. The + points indicate experimental data by Liang as per Brinson and Lammering (1993).
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4.1. Unidimensional mechanical and thermal cycles

To demonstrate the constitutive response of the model to an applied isothermal mechanical load
cycle, we begin by subjecting the model to a strain path at several temperatures. The material under
consideration is a titanium nickel alloy (TiNi) for which approximate material parameters are chosen as
shown in Table 1. As an order of magnitude check, the test runs at 263 and 323 K are compared to the
experimental data of Liang as reported in Brinson and Lammering (1993). The initial conditions for the
lowest temperature curve were set as x a=0, xÿ � x� � 1

2 , so the run represents a martensitic detwinning
transformation. The next two curves, run at 293 and 323 K, started in a pure austenitic state (x a=1)
and exhibited superelasticity to varying degrees in accordance with the temperature. The applied strain
rate was quasistatic (E

.
=1 � 10ÿ4sÿ1) and the reference temperature y0=273 K. The variance of the

transformation load and recoverable strain is seen in Fig. 3 to be realistic for the intended class of
materials.

Fig. 4. Thermal load cycle of TiNi bar under isostress conditions. The solid, dashed and dashed±dot lines indicate loads of 100,

300, and 500 MPa, respectively.
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The second series of tests considered an isostress thermal load cycle of a one-dimensional bar under

several values of an applied tension. The results of the three runs, loaded at 100, 300 and 500 MPa,

respectively, are shown in Fig. 4.

Fig. 5. Truss system con®guration. Each bay measures 0.2 m square, with each bar having a cross sectional area of 0.000123 m2

(0.00625 m radius).

Fig. 6. Simulation of truss system response to mechanical cycling. The progression from left to right and top to bottom shows iden-

tical load paths at 253, 283, 313, 333, 353, and 373 K. The structural system is shown in Fig. 5.
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In each case, the material is assumed to start in the austenite phase at the high temperature, and
transformation to martensite is induced by lowering the temperature. The simulations indicate that with
increasing load, the transition occurs at higher temperature as is observed in TiNi alloys.

4.2. Truss system examples

Fig. 5 shows the physical layout and dimensions of a cantilever truss similar to that which was
suggested as an example problem by Govindjee and Kasper (1999). By virtue of the spatially
inhomogeneous stress state in the structure, this system provides a test of the constitutive iteration over
a wide range of initial conditions. For both the mechanical load cycles and the thermo-mechanical
cycles discussed below, the tip loading was applied at a quasi-static rate and the material parameters
listed in Table 1 were employed.

The load de¯ection response under mechanical cycling as measured at the end of the truss is shown in
Fig. 6. The six runs, which are ordered left to right and then downward, simulated isothermal

Fig. 7. Simulation of truss system response to a mechanical-thermal closed cycle starting from the state xÿ � x� � 1
2 and a tem-

perature of 283 K. The circle denotes the start and ®nish points, while the path direction is indicated by the arrows. The structure

is that of Fig. 5.
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conditions at 253, 283, 313, 333, 353, and 373 K, respectively. The initial phase state for temperatures
below 293 K were set as xÿ=x+=0.5, while the higher temperature runs were initialized with x a=1;
here and throughout the remainder the reference temperature y0=293 K. By running identical load
cycles at increasing temperatures, the series demonstrates how the model progresses toward superelastic
behavior.

A combined thermal and mechanical cycle was then applied to the system as indicated in Fig. 7. As
previously, the plot indicates reaction at the tip of the structure. The elements were initialized in a
martensitic state (xÿ=x+=0.5) at a temperature of 283 K, and subsequently loaded and unloaded
under isothermal conditions. The temperature was then increased under zero load to a maximum of
353 K, by which time the structure had essentially recovered its original con®guration. The cycle was
then closed by decreasing the temperature to its initial value.

4.3. Beam examples

Beam simulations were performed by incorporating the constitution presented above into the beam
formulation of Simo et al. (1984). The cross section of each beam was divided into ®ve layers, with a
®ve point quadrature rule applied in each layer (see Kasper, 1997 for details). The simulated cantilever

Fig. 8. Beam simulation: mechanical cycles at various temperatures. Initial conditions (from top to bottom) were xÿ � x� � 1
2 at

253 K, x a=1 at 313 K, and x a=1 at 373 K.
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beam was then divided into ten elements along its length, and displacement driven at the far end. The
length and cross section were set at 20 and 2 � 1 m, respectively, and the material parameters are those
listed in Table 1.

The ®rst set of simulations consists of three isothermal runs at 253, 313 and 373 K. The same
displacement path was applied to the end of each beam, with the load displacement results indicated in
Fig. 8. The low temperature cycle was initialized to xÿ=x+=0.5, whereas the second and third
simulations began in the austenite phase. As with the truss example, superelastic behavior is induced
with increased temperature.

The next simulation begins with the aforementioned beam in a martensitic state (xÿ=x+=0.5) at
253 K. An end load is then applied and removed at this temperature, leaving the beam with a residual
deformation due to the martensitic transformation. The temperature is then increased to a maximum of
373 K to induce recovery of the deformation as indicated in Fig. 9. Return to the initial temperature
then closes the cycle.

Fig. 9. Beam simulation: thermo-mechanical cycle with initial conditions xÿ � x� � 1
2 at 253 K. The circle marks the start and ®n-

ish points along the path; the arrows indicate the direction traveled.
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Fig. 10. The top ®gure shows the layout of the stent mechanism analyzed. The device measures 4.2 mm wide by 1.4 mm tall with a

square cross section of 0.0508 mm in each direction. The lower ®gure shows the total lateral de¯ection (solid line) and the total ver-

tical height reduction (dash±dot line) under the applied pinching load. The simulation is intended as a rough proof of concept for

such devices.
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4.4. SMA mechanism

The next simulation is of a structure representing an idealized portion of a SMA stent. The chosen
dimensions of the lattice cell are shown in Fig. 10, along with the lateral and vertical displacements
plotted against the pinching load applied to crush the stent vertically. The members are beam elements
of the type described in the previous simulations, and the temperature was held constant at 330 K
throughout the run. At the maximum applied load, the vertical dimension of the stent is reduced by
33%, which is fully recovered upon removal of the load. Note the nonintuitive behavior of the lateral
displacement curve caused by the formation of the xÿ variant under load. While this demonstration
does not attempt to model any existing stent mechanism, the simulation does serve as a rough proof of
concept for such devices. It is interesting to note that in practice, similar devices are designed in both
superelastic (as shown here) and martensitic versions (Russell, 1998).

4.5. Plasticity example

The ®nal example incorporates the e�ects of plasticity as described in Appendix C. The test geometry,
which is provided in Fig. 11, is that of a cantilever beam. The material parameters were chosen to
roughly match those reported in Govindjee and Kasper (1997), although no attempt at calibration was
made. The simulation consisted of a mechanical cycle at a constant temperature, followed by a thermal
cycle in the unloaded state. The con®gurations and the stress±strain-temperature response curves given
in Figs. 11 and 12 indicate the interplay of plasticity and the shape memory e�ect, particularly near the
base of the cantilever. It is interesting to note that even with the signi®cant plastic deformation, over
half the mechanically induced residual deformation was recoverable.

5. Discussion

In this paper we have addressed the computational aspects of implementing a rate dependent
constitutive model for shape memory alloy materials. This model, which is derived from the referenced

Fig. 11. Shape memory beam simulation incorporating plasticity. The bottom de¯ected shape shows the residual deformation

induced by the mechanical load/unload cycle, whereas the intermediate con®guration demonstrates partial recovery following a

thermal cycle. The original geometry is given at the top; see Fig. 12 for the response curves. Note that the region of the cantilever

beyond the zone of plasticity completely recovers the initial shape following the thermal cycle.
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literature, has been shown to realistically capture the one-dimensional behavior of TiNi alloys under
both thermal and mechanical loading. While an explicit proof has not been provided, numerical
computation of the model dissipation indicates that the constitution is second law compliant in
accordance with the Clausius±Planck inequality. Additionally, the model is extendible to higher spatial
dimensions where the number of variants must be increased to account for the observed behavior of
shape memory alloys; the primary di�culty in moving to higher dimensions lies in computing the energy
barriers.

From a computational viewpoint, it has been found that the proposed integration algorithm provides
a robust means for solving the highly nonlinear constitutive equation set which arises from such models,
particularly when driven over a wide range of loading paths. On the downside, this approach is not as
e�cient in terms of ¯op counts as a phase space approach, although preliminary suggestions have been
made for reducing the expense of the current approach.

Items of interest for further investigation include the incorporation of rate dependent plasticity into
the constitutive model, extension to higher dimensions, and further reductions in the computational
expense required for large scale structural system simulation.

Fig. 12. Thermomechanical cycling of a shape memory beam accounting for plasticity. The circled points coincide with the

de¯ected shapes given in Fig. 11. Despite the large residual deformation following unload, over 50% of the residual deformation is

recovered by the thermal cycle.
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Appendix A

Computation of exp� ÄQ �

Noting that the individual o�-diagonal entries in the transition probability matrix are bounded by
0 R Pij R 1, it is apparent that QÄ is a non-normal, negative semide®nite matrix with the maximum
possible absolute eigenvalue, vlmaxv, bounded by vlmaxv R 2(v ÿ 1)oDt. Here, v is taken as the number of
variants which throughout this discussion we will assume is small (say v R 24). Given that zero is also
an eigenvalue, the spacing between the maximum and minimum eigenvalues is also bounded by
2(v ÿ 1)oDt, and similarly it is noted that the in®nity norm of QÄ is strictly bounded by 2(v ÿ 1)oDt.
This measure may be used as one potential indicator of problem `sti�ness' or di�culty in computing the
exponential (Stewart, 1994) as discussed next.

For the problem at hand, a number of means of computing exp[QÄ ] were tried in a comparative
manner. The techniques included the Taylor series method, uniformization, Pade approximation and
several ordinary di�erential equation techniques. Tests were run with both spaced and repeated
eigenvalues for problems of increasing sti�ness as approximated by the in®nity norm of Q. The results
indicated that Pade and uniformization with scaling and squaring are most e�cient for the typical
problems encountered in this application.

The cost of each computation, using Pade as a baseline, is dominated by the expense of the squaring
portion of the routine when kQÄ k1 grows. In such cases, the cost of the simplest implementation is
roughly O(2 log(kQÄ k1)v 3) where v is again the number of variants. In the following, three potential
techniques for reducing costs are mentioned.

Reduction of dimensionality
As indicated by the zero eigenvalue of QÄ , a linear dependence stemming from the fact that S_x

a � 0
(and Sxa � 1), may be utilized to reduce the dimension of the problem. If one ignores the relatively
small cost required to perform the reduction, the cost of the integration immediately becomes
proportional to (v ÿ 1)3 rather than (v )3. Thus, this simple consideration can reduce costs signi®cantly
when the exponential routine is called frequently.

Triangular decomposition
Another approach which may prove more e�cient than Pade or uniformization is to compute the

Schur decomposition of QÄ :

ÄQ � S ÄTS
T

where S is orthogonal, and TÄ is upper triangular (for a QÄ with real eigenvalues). The problem is then
reduced to the exponentiation of the block triangular matrix TÄ :

exp� ÄQ � � Sexp� ÄT �ST:

As discussed by Moler and Van Loan (1978), the potential di�culty with this technique lies in errors
associated with repeated eigenvalues (which may occur frequently in the current application). However,
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the initial techniques described by Parlett (1976) for computing functions of a triangular matrix have
since been re®ned to largely overcome such di�culties. While the cost of a Schur decomposition is still
conservatively O(25(v )3) (or O(25(v ÿ 1)3) with reduction in dimensionality) (Demmel, 1997), this
coe�cient may prove to be smaller than the previous estimate when kQÄ k1 is large.

Constrained integration
Integration of the kinetic equations must be performed in such a manner that the 2v + 1 constraintsX

a

xa � 1 �A1�

0RxaR1 �A2�
are satis®ed. The tolerance for satisfaction must be strict due to the fact that violations of the
constraints leads to nonphysical results which contradict the principle of mass conservation. This implies
that for our application the comparative evaluation of integration schemes must take into account not
just the norm of error, but the location of that error in volume fraction space (see Fig. A1). Hence, the

Fig. A1. Geometric interpretation of constraint set. The � locates the projection of a random point into the plane x a+xÿ+x+=1,

with the bounded triangular area indicating the interior of the constraint set. Once in the plane, a solution satisfying the remaining

constraints is found by a closest point projection to the constraint surface.
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preliminary results gathered in choosing an integration technique mentioned above were in¯uenced by
the fact that for this class of problems errors in the exponential map still tend to preserve both Eqs.
(A1) and (A2), whereas errors in the standard ordinary di�erential equation solvers tested tended to
violate Eqs. (A2). This suggests that the combination of a standard o.d.e. solver with the individual
volume fraction constraints may prove an e�cient technique. Fig. A1 illustrates how the constraints
may be enforced from a simple geometric projection viewpoint. Recently, Govindjee and Hall (1999)
have shown this to be the method of choice.

Appendix B

Algorithmic tangent

While the implicit iteration outlined in Section 3 solves the discrete form of the constitutive equations
at a local point, it is also necessary to consider the global problem which is arrived at by assembling
contributions from each element. In particular, during the global solution it is often advantageous to
obtain the tangent to the large scale problem. However, by the nature of the assembly process, the
construction of the global tangent may be reduced to the assembly of the local tangents, or rather, the
linearization of the local constitutive equations. As was pointed out by Simo and Taylor (1986), the
linearization of the constitution must be consistent with the discrete form of the continuum equations,
which in general di�er from the linearization of the continuum equation set. In this section, the
derivation of the consistent (algorithmic) tangent is outlined for the numerical model presented in the
body of the paper.

Due to the highly nonlinear nature of the constitution, the consistent tangent is not readily expressible
in compact form. As such, only the essential components will be presented. We begin by taking the
variation of the discrete one-dimensional stress [see Eq. (33)]

dSn�1 � @Sn�1
@Cn�1

dCn�1 � @Sn�1
@En�1

dEn�1 � @Sn�1
@yn�1

dyn�1 � @Sn�1
@xÿn�1

dxÿn�1 �
@Sn�1
@x�n�1

dx�n�1 �B1�

where the following terms are easily derived.

@Sn�1
@Cn�1

� En�1 ÿ z�yn�1 ÿ y0�

@Sn�1
@En�1

� Cn�1

@Sn�1
@yn�1

� ÿzCn�1

@Sn�1
@xÿn�1

� ÿCÿEÿT

@Sn�1
@x�n�1

� ÿC�E�T �B2�
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Combining Eqs. (B2), Eq. (B1), and the following expression for the variation of the e�ective modulus

dCn�1 � Cadxa
n�1 � Cÿdxÿn�1 � C�dx�n�1 �B3�

it is seen that the primary task is the linearization of the transformation kinetics governing the evolution
of the volume fractions. The discrete version of the kinetic relations given in Eq. (36) may be expressed
in update form as

xxxn�1 � Mn�1xxxn �B4�

where the functional relationship Mn + 1=MÃ n + 1(QÃ n + 1) is noted. Then, by temporarily dropping the
time subscripts (n + 1), denoting xxxn by xxx0, and adopting indicial notation with summation over repeated
indices one ®nds that

dxi � dMijx
0
j �

@Mij

@ ~Qkl

d ~Qklx
0
j � Zijkld ~Qklx

0
j �B5�

where Z is the tangent of the chosen integration method. The evaluation of dQÄ =oDtdQ requires an
expression for the variation of each unique term comprising Q. Based on Eq. (29) and the relation
(bab)n + 1=bÃab (Sn + 1, yn + 1), the symbolic evaluation of a typical term is carried out in the following
manner

dPab � exp

�ÿDvbab
ky

��ÿDv
ky

dbab � Dvbab
ky2

dy
�

� Pab

�ÿDv
ky

�
@bab
@y

dy� @bab
@S

dS

�
� Dvbab

ky2
dy

�

� Pab

�ÿDv
ky

@bab
@y
� Dvbab

ky2

�
dy� Pab

�
@bab
@S

�
dS �B6�

where once again the time subscripts (n + 1) have been neglected in the interest of notational clarity.
The remaining terms @bab/@y and @bab/@S must be worked out individually based on the particular values
of a and b indicated in Eq. (30), and as such are not explicitly written here. However, by allowing H
and L to, respectively, represent the compilation of the ®rst and second terms in Eq. (B6), the variation
of the volume fractions is given by

dxxxn�1 � �oDtZijklHklxxx
0
j �dyn�1 � �oDtZijklLklxxx

0
j �dSn�1: �B7�

With this result Eq. (B1) may be rewritten accounting for Eqs. (B2), (B3), and (B7). The expression is
simpli®ed by adopting the notation

dSn�1 � ~f tdyn�1 � ~fs dSn�1 � ~fedEn�1 �B8�

where the scalars ~fs , ~fe , and fÄt have the expected meaning. However, since the current implementation
treats the temperature as an assigned ®eld, dyn + 1=0, and the tangent required by the code to move the
global solution forward is found by isolating the stress term. The result is
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dSn�1 � C
alg
n�1dEn�1 �

"
~fe

1ÿ ~fs

#
dEn�1 �B9�

where Calg
n + 1 denotes the algorithmic tangent.

Appendix C

Incorporation of plasticity

In this section the one-dimensional constitution developed thus far is addended with a standard
isotropic linear hardening plasticity model. The approach taken is to assume that the shape memory
transformations and plastic evolution are uncoupled in the sense that only one will occur at any given
time. However, in accordance with experimental observations (Vandermeer et al., 1981), the
development of plastic strain is assumed to in¯uence the shape memory e�ect by hindering the
recoverability of the high symmetry phase. Although it is noted that the lack of su�cient experimental
evidence suggests that this approach is somewhat speculative, Govindjee and Kasper (1997) have
demonstrated that for the data available, the method captures the essential (one dimensional) features in
a realistic manner. As such, their proposal is extended to the model presented.

Rather than repeat the well-known continuum plasticity equations, we will work directly with the time
integrated equation set presented in Section 3, beginning with the stress computation. The modi®ed
form of Eq. (33) is

Str
n�1 � x̂

ÿ
Cÿ�En�1 ÿ Ep

n ÿ EÿT ÿ z�yÿ y0�� � x̂
�
C��En�1 ÿ Ep

n ÿ E�T ÿ z�yn�1 ÿ y0��

� x̂
a
Ca�En�1 ÿ Ep

n ÿ z�yn�1 ÿ y0��
�C1�

where x̂
a
is de®ned by x̂

a � xa � ~x
a
, and ~x

a
represents the volume fraction of the material which is

locked in due to the plasticity. This formulation assumes that the remaining portion, x a, is free to evolve
in the manner presented in Algorithm 1. The evolution of the locked in fractions, ~x

a
, is given by the two

parameter function (Govindjee and Kasper, 1997)

h�gn�1� � �1ÿ W� exp�ÿkgn�1� � W �C2�
which gives the recoverable austenite fraction for a given equivalent plastic strain (gn + 1). The plasticity
algorithm is thus as given in Algorithm 2.

Algorithm 2 (Plasticity equations).

1. Input at time t n + 1:

fEp
n, Cn�1, xxxtr

n�1, ~xxxn, gng �C3�
2. Compute trial yield function value:

ftr �j Str
n�1 j ÿ�Sy �Hgn� �C4�
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3. IF (ftr < 0) THEN ELASTIC

Sn�1 � Str
n�1 �C5�

Ep
n�1 � Ep

n�1 �C6�

gn�1 � gn �C7�

~xxxn�1 � ~xxxn �C8�

xxxn�1 � xxxtr
n�1 �C9�

RETURN�)END �C10�
4. ELSE

Dg � ftr=�Cn�1 �H � �C11�

Sn�1 � Str
n�1 ÿ DgCn�1 sign�Str

n�1� �C12�

Ep
n�1 � Ep

n � Dg sign�Str
n�1� �C13�

gn�1 � gn � Dg �C14�

~xxxn�1 � ~xxxn �
�
1ÿ h�gn�1�

h�gn�
�
xxxtr
n�1 �C15�

xxxn�1 �
h�gn�1�
h�gn�

xxxtr
n �C16�

5. END.

The above algorithm, which is based on the radial return mapping of Simo and Hughes (1998), does
not account for simultaneous plastic ¯ow and transformation. Hence, the procedure for computing the
composite constitution is as follows. First, Algorithm 1 (with the noted modi®cation to the stress
computation) is called to determine Cn + 1, xxxn�1, and Sn + 1. These values are then entered into
Algorithm 2 as Cn + 1, xxx

tr
n�1, and Str

n + 1 along with ~xxxn, gn, and Ep
n. To ensure that the two algorithms do

not overlap the conditions kx̂xxn�1 ÿ x̂xxnk < TOL can be used. The algorithmic tangent is set to Cn + 1H/
(Cn + 1+H ) if plastic ¯ow has occurred. Note that experimental data suggests that phase
transformation and plastic ¯ow regions are well separated as evidenced by the transformation and yield
stress values.
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